Amazon SQS vs Apache Kafka

Amazon SQS and Apache Kafka are popular solutions on the market, but they aren't created equal. Here's what you should know about these platforms along with the associated pros and cons for each solution. While you're comparing, be sure to check out IronMQ's flexible, highly scalable Message Queue by starting a 14-day free trial.

Achieve Cloud Elasticity with Iron

Speak to us to find how you can achieve cloud elasticity with a serverless messaging queue and background task solution with free handheld support.

What is Amazon SQS?

Amazon Simple Queue Service, more commonly known as Amazon SQS, is a fully managed message queue (Amazon MQ) that allows you to connect distributed systems and serverless applications with ease, speeding up processes and reducing complexity with the help of a powerful messaging queue.

Using AWS SQS, you can effortlessly send, store, and receive messages across your systems at any volume, without fear of missed messages or service downtime.

With Amazon SQS, you can choose from standard queues and FIFO queues. Both ensure your message reaches a single consumer and offer similar functionality.

Standard queues offer better throughput and best-effort ordering while guaranteeing at least once delivery. FIFO queues guarantee that messages are processed exactly once and in the same order they were put into the queue.

Both types have many use cases, but Apache Kafka offers comparable services, along with IronMQ.

Start a 14-day free trial to explore the flexibility of IronMQ.

Iron.io Serverless Tools

Speak to us to learn how IronWorker and IronMQ are essential products for your application to become cloud elastic.

What is Apache Kafka?

Apache Kafka is a distributed data store that's ideal for processing real-time data, known as streaming data. Streaming data is data that is generated non-stop by countless data sources (often thousands), with data sources sending data in simultaneously. Streaming platforms need to be able to handle this massive, constant data while processing it incrementally using Kafka topics and Kafka clusters.

Kafka allows users to store streams of records in the same order they were generated, publish-subscribe to record streams, and process streams in real-time. As such, Kafka is primarily used when you need to build real-time pipelines and applications that process data streams.

By combining messaging, storing, and stream processing into one application, Kafka gives you better insights and processing capabilities in the form of a fault-tolerant managed service.

Pros and Cons of Amazon SQS

The pros and cons of Amazon SQS are plentiful. Let's start with the pros:

  • Reduce overhead. If you already use Amazon AWS to manage your operations and the infrastructure that powers them, SQS promises a highly available service that has no upfront cost and no need to acquire or configure third-party software. SQS queues are created dynamically and scale up or down automatically, depending on need.
  • Reliable delivery. You can transmit any amount of data using SQS without the fear of losing messages or seeing processes halt because one service is unavailable. SQS decouples the components of your applications so they can run and fail, independent of one another, improving your system's overall fault tolerance.
  • Secure sensitive data. With Amazon SQS, you can securely exchange sensitive data with the help of server-side encryption. SQS also integrates with the Key Management Service of AWS so you can easily and centrally manage your encryption keys.
  • Elastic and cost-effective. Leverage the AWS cloud to scale on-demand, making your system more elastic and cost-effective. There's no need to plan resources or provision them in advance, as Amazon will handle that automatically.

The cons? Other than high costs when operating at scale, SQS lacks many basic features, like the ability for a message to trigger a Lambda function. Reduced control over the MQs performance and the lack of control over messages themselves can hold you back when using SQS.

Pros and Cons of Apache Kafka

Apache Kafka also has a long list of pros and cons to consider. The pros include the following:

  • Scalable solution. Kafka uses a partitioned log model, allowing large amounts of data to be distributed across multiple servers. This makes your system scalable beyond a single server's capacity.
  • Fast streams. Reduce latency by decoupling your data streams with the help of Kafka, leading to faster processing and more reliable results.
  • Durable partitions. Since partitions are distributed and replicated across multiple servers, Kafka is durable. All data is written to disk, protecting against server outages and failures and improving the fault tolerance of your data.

Kafka also comes with many cons, with no complete set of monitoring tools and clumsy behaviour. Issues with message edits, among other limitations, make Kafka a less than ideal solution.

Amazon SQS vs Apache Kafka

How Iron Can Help

Are you seeking a messaging system that can scale with your needs? While both Kafka and SQS are scalable, neither is as fast as IronMQ. The lightweight, lightning fast messaging service offered by Iron outperforms competitors like RabbitMQ and ActiveMQ, while bringing you an intuitive user interface and a robust feature set that allows you to do more with your data.

When you opt for Iron, you can avoid the downsides and limitations of Kafka and SQS and instead gain complete control of your messaging queue. Use HTTPS/Rest-based APIs for easy cloud integration, or deploy on premises or in a hybrid environment. Choose between point-to-point and publish-subscribe patterns and optimize settings to come up with a messaging queue that's best suited for your business and its use cases.

Are you ready to try Iron for yourself and see how IronMQ can improve your system's efficiency? Start a 14-day free trial and put Iron to the test.

Unlock the Cloud with Iron.io

Find out how IronWorker and IronMQ can help your application obtain the cloud with fanatical customer support, reliable performance, and competitive pricing.

Leave a Comment





This site uses Akismet to reduce spam. Learn how your comment data is processed.